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Abstract

This paper develops a simple test for the null hypothesis of no unit root for panel data
with cross-sectional dependence in the form of a common factor in the disturbance. We do
not estimate the common factor but mop-up its effect by employing the same method as the
one proposed in Pesaran (2007) in the unit root testing context. Our test is basically the
same as the Kwiatkowski et al. (1992) test with the regression augmented by cross-sectional
average of the observations, and hence, we call it the augmented KPSS test. We also develop
a Lagrange multiplier (LM) test allowing for cross-sectional dependence and compare it with
the augmented KPSS test under the null of no unit root, under the local alternative and
under the fixed alternative, and discuss the differences between these two tests. We show
that the augmented KPSS test is asymptotically optimal in the sense that the two tests
have the same asymptotic local power, although the optimality of the augmented KPSS test
is not guaranteed under a wide range of the fixed alternative.

JEL classification: C12, C33

Key words: KPSS test, unit root, cross-sectional dependence, LM test; locally best test

1Correspondence: Eiji Kurozumi, Department of Economics, Hitotsubashi University, 2-1 Naka, Kuni-
tachi, Tokyo, 186-8601, Japan. E-mail: kurozumi@stat.hit-u.ac.jp.
This project was supported by JSPS and BA under the Japan–Britain Research Cooperative Program, by
the Ministry of Education, Culture, Sports, Science and Technology under Grants-in-Aid No.18730142 and
by the Global COE program of the Research Unit for Statistical and Empirical Analysis in Social Sciences,
Hitotsubashi University.



1. Introduction

Since the beginning of the 1990s, much theoretical and empirical econometrics literature

was devoted to testing unit root and stationarity in panel data with a large T (time dimen-

sion) and a large N (cross-section dimension). The main motive for applying unit root and

stationarity tests to panel data is to improve the power of the tests relative to their uni-

variate counterparts. This was supported by the ensuing applications and simulations. The

early theoretical contributions were made from the mid-1990s to the early 2000s under the

assumption that the cross-sectional units are independent or at least not cross-sectionally

correlated. Banerjee (1999), Baltagi and Kao (2000), and Baltagi (2001) provide compre-

hensive surveys on the first generation panel tests.

However, in most empirical applications, this assumption is erroneous. O’Connell (1998)

was the first to show via simulation that the panel tests are considerably distorted when

the independence assumption is violated. Banerjee, Marcellino and Osbat (2001, 2004)

argued against the use of panel unit root tests due to this problem. Therefore, it became

imperative to develop panel tests that take the possibility of cross-sectional dependence into

account. This led, recently, to a flurry of papers accounting for cross-sectional dependence

in different forms or to the arrival of second generation panel unit root tests. The most

noticeable proposals in this area are by Chang (2004), Phillips and Sul (2003), Bai and Ng

(2004), Moon and Perron (2004), Choi and Chue (2007), and Pesaran (2007) for unit root

panel tests. For panel stationarity tests, the only contributions thus far are by Bai and

Ng (2005) and Harris, Leybourne and McCabe (2005), both of which corrected for cross-

sectional dependence by using the principal component analysis proposed by Bai and Ng

(2004).

In this paper, we focus on a test for the null hypothesis that there is no unit root in

cross-sectionally dependent panel data against the alternative of the existence of unit roots.

To deal with cross-sectional dependence, we adapt the Pesaran (2007) approach to the

panel stationarity test of Hadri (2000) due to its conceptual simplicity. Our test is basically

the same as the Kwiatkowski et al. (1992) test (KPSS test), and therefore, we call it the
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augmented KPSS test. We also derive a Lagrange multiplier (LM) test, which is known to

be locally optimal under the assumption of normality. We show that these two tests have

the same asymptotic property under the null of no unit root and under the local alternative.

This implies that the augmented KPSS test is asymptotically locally optimal. Since it is

much easier to construct the augmented KPSS test statistic than the LM test statistic while

both tests have the same asymptotic optimality, our test is useful in practical analysis.

The paper is organized as follows. Section 2 sets up the model and assumptions, and

defines the augmented test statistic. We also develop the LM test allowing for cross-sectional

dependence. Section 3 is devoted to the comparison of our augmented KPSS test under

restrictive assumptions with the LM test under the null of no unit root, under the local

alternative and under the fixed alternative. We show that the limiting null distribution of

the augmented KPSS test is the same as that of Hadri’s (2000) test. In Section 4, we examine

whether our theoretical result is valid in finite samples via simple Monte Carlo simulations.

Section 5 gives concluding remarks. All the proofs are relegated to the Appendix.

We now give a summary on the notations. We define MA = IT − A(A′A)−1A′ for

a full column rank matrix A. The symbols
p (N,T )−→ and

(N,T )
=⇒ imply joint convergence in

probability and joint weak convergence, respectively, when both N and T approach infinity

simultaneously, while
T

=⇒ and
N

=⇒ imply weak convergence when only T or N approaches

infinity.

2. Model and Test Statistics

2.1. Model and assumptions

Let us consider the following model:

yit = z′tδi + rit + uit, rit = rit−1 + vit, uit = ftγi + εit (1)

for i = 1, · · · , N and t = 1, · · · , T , where zt is deterministic and ri0 = 0 for all i. The

commonly used specification of zt in the literature is either zt = zµt = 1 or zt = zτt = [1, t]′.

In this paper, we consider these two cases. Accordingly, we define δi = αi when z = 1
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and δi = [αi, βi]
′ when z = [1, t]′. In model (1), z′tδi is the individual effect while ft is

the one-dimensional unobserved common factor, γi is the loading factor, and εit is the

individual-specific (idiosyncratic) error.

By stacking yit with respect to t, model (1) can be expressed as
yi1
yi2
...
yiT

 =


z′1
z′2
...
z′T

 δi +


ri1
ri2
...
riT

+


f1
f2
...
fT

 γi +


εi1
εi2
...
εiT

 ,

ri1
ri2
...
riT

 =


1 0
1 1
...

...
. . .

1 1 · · · 1



vi1
vi2
...
viT

 ,
or

yi = Zδi + ri + fγi + εi (2)

= Zδi + Lvi + fγi + εi,

where Z = [τ,d] with τ = [1, 1, · · · , 1]′ and d = [1, 2, · · · , T ]′ being T × 1 vectors, L is a

T × T matrix with ones on the main diagonal and everywhere below it. Further, we have
y1

y2
...

yN

 =


Z

Z
. . .

Z



δ1
δ2
...
δN

+


L

L
. . .

L




v1

v2
...

vN

+


fγ1
fγ2

...
fγN

+


ε1
ε2
...
εN


or

y = (IN ⊗ Z)δ + r + (γ ⊗ f) + ε (3)

= (IN ⊗ Z)δ + (IN ⊗ L)v + (γ ⊗ f) + ε.

In this paper, we make the following assumption.

Assumption 1 (i) The stochastic processes {εit}, {ft}, and {vit} are independent and

εit ∼ i.i.d.N(0, σ2ε), ft ∼ i.i.d.N(0, σ2f ), vit ∼ i.i.d.N(0, σ2v) with known variances.
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(ii) There exist real numbers M1, M , and M such that |γi| < M1 < ∞ for all i and

0 < M < |γ̄| < M <∞ for all N , where γ̄ = N−1
∑N

i=1 γi.

The assumption of normality with homoskedasticity in (i) is required to derive the LM test

and to discuss the optimal property of the tests. The variances σ2ε , σ
2
f , and σ2v are assumed to

be known in order to make the theoretical investigation as simple as possible. The unknown

case will be discussed later. (ii) implies that each individual is possibly affected by the

common factor with the finite weight γi and that the absolute value of the average of γi

is bounded away from 0 and above both in finite samples and in asymptotics. The latter

property is important in order to eliminate the common factor effect from the regression.

See also Pesaran (2007).

We consider a test for the null hypothesis of no unit root component against the alterna-

tive of the existence of unit roots for model (1). Since all the innovations are homoskedastic,

the testing problem is given by

H0 : ρ = 0 vs. H1 : ρ > 0 (4)

where ρ = σ2v/σ
2
ε is the signal-to-noise ratio. Under H0, all rits become equal to zero and

thus do not have unit root components, unlike under H1.

2.2. A simple stationarity test

Panel stationarity tests have already been proposed by Hadri (2000) and Shin and Snell

(2006) for cross-sectionally independent data, and we extend Hadri’s test to the cross-

sectionally dependent case. Hadri (2000) showed that if there is no cross-sectional depen-

dence in a model, we can construct the LM test using the regression residuals of yit on zt in

the same way as KPSS (1992), and that the limiting distribution of the standardized LM

test statistic is standard normal under the null hypothesis. However, it can be shown that

Hadri’s (2000) test depends on nuisance parameters even asymptotically if there exits cross-

sectional dependence; we then need to develop a stationarity test that takes into account

cross-sectional dependence.
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In order to eliminate the effect of the common factor from the test statistic, we make use

of the simple method proposed by Pesaran (2007), which develops panel unit root tests with

cross-sectional dependence. As in Pesaran (2007), we first take a cross-sectional average of

the model:

ȳt = z′tδ̄ + r̄t + ftγ̄ + ε̄t, (5)

where ȳt = N−1
∑N

i=1 yit, δ̄ = N−1
∑N

i=1 δi, r̄t = N−1
∑N

i=1 rit, γ̄ = N−1
∑N

i=1 γi, and

ε̄t = N−1
∑N

i=1 εit. Since γ̄ 6= 0 by assumption, we can solve equation (5) with respect to ft

as

ft =
1

γ̄

(
ȳt − z′tδ̄ − r̄t − ε̄t

)
.

By inserting this solution of ft into model (1), we obtain the following augmented regression

model:

yit = z′tδ̃i + γ̃iȳt + εit, (6)

where δ̃i = δi − γ̃iδ̄, γ̃i = γi/γ̄, and εit = rit − γ̃ir̄t + εit − γ̃iε̄t. Based on (6), we propose to

regress yit on zt and ȳt for each i, and construct the test statistic in the same way as Hadri

(2000). That is,

ZA =

√
N(ST − ξ)

ζ
, (7)

where ST = N−1
∑N

i=1 STi with STi = (σ2εT
2)−1y′iMwL

′LMwyi and
ξ = ξµ = 1

6 , ζ2 = ζ2µ = 1
45 when zt = zµt = 1,

ξ = ξτ = 1
15 , ζ2 = ζ2τ = 11

6300 when zt = zτt = [1, t]′.

Note that STi can also be expressed as

STi =
1

σ2εT
2

T∑
t=1

(Swit )
2 where Swit =

t∑
s=1

ε̂is

with ε̂it obtained for each i by regressing yit on wt = [z′t, ȳt]
′ for t = 1, · · · , T .

From (7), we can see that ST is the average of the KPSS test statistic across i and ZA

corresponds to its normalized version. We call ZA the augmented KPSS test statistic.

2.3. An LM test for panel stationarity
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Although the augmented KPSS test is easy to implement, we do not know whether it has

an optimal property. Since the LM test is known to be a locally best invariant test under

the assumption of normality as shown by Tanaka (1996), we derive the LM test, and then,

in the later section, compare it with the augmented KPSS test.

Under Assumption 1, the log-likelihood function of y, denoted by `, is expressed as

` = const− 1

2
log |Ω| − 1

2
{y − (IN ⊗ Z)δ}′Ω−1{y − (IN ⊗ Z)δ},

where Ω = V ar(y) = ρ
(
σ2εIN ⊗ LL′

)
+A⊗IT with A = σ2fγγ

′+σ2εIN . The partial derivative

of ` with respect to ρ is given by

∂`

∂ρ
= const+

1

2
{y − (IN ⊗ Z)δ}′Ω−1∂Ω

∂ρ
Ω−1{y − (IN ⊗ Z)δ}. (8)

Noting that

Ω|H0
= A⊗ IT and

∂Ω

∂ρ

∣∣∣∣
H0

= σ2εIN ⊗ LL′, (9)

the maximum likelihood estimator (MLE) of δ under H0 is given by

δ̂ =
[
(IN ⊗ Z ′) Ω−1

∣∣
H0

(IN ⊗ Z)
]−1

(IN ⊗ Z ′) Ω−1
∣∣
H0

y

= [IN ⊗ (Z ′Z)−1Z ′]y. (10)

Thus, the MLE of δ under H0 is the same as the OLS estimator. By evaluating (8) under

the null hypothesis using (9) and (10), the LM test statistic is given by

LM =
1

NT 2
{y − (IN ⊗ Z)δ̂}′(A−1 ⊗ IT )(σ2εIN ⊗ LL′)(A−1 ⊗ IT ){y − (IN ⊗ Z)δ̂}

=
1

NT 2
y′(σ2εA

−2 ⊗MzLL
′Mz)y.

Then, the normalized version of the LM test statistic is given by

ZLM =

√
N
(
LM − ξ

)
ζ

, (11)

where ξ and ζ are the same as in ZA.

3. Limiting Distributions of the Test Statistics
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In this section, we compare the augmented KPSS test with the LM test. Note that the

LM test is known to be a locally best invariant test under Assumption 1. Because there

is no one-to-one transformation between ZA and ZLM , the augmented KPSS test does not

have local optimality in finite samples. As such, we now focus on whether the KPSS test is

asymptotically locally optimal or not.

In order to investigate the asymptotic local optimality of the augmented KPSS test, we

compare it with the LM test statistic under the null hypothesis, under the local alternative

and under the fixed alternative. We first give the limiting distributions of the two test

statistics under the null hypothesis.

Theorem 1 Suppose that Assumption 1 holds. Under H0, as N and T approach infinity

simultaneously with N/T → 0, the augmented KPSS and LM test statistics have a limiting

standard normal distribution for both cases of zt = 1 and zt = [1, t]′. That is, ZA, ZLM
(N,T )
=⇒

N(0, 1).

Note that the rejection regions of both ZA and ZLM are the right-hand tails as in Hadri’s

(2000) test. Theorem 1 shows that Pesaran’s (2007) method works well to eliminate cross-

sectional dependence for testing the null hypothesis of stationarity. We also note that the

condition that N/T → 0 as N and T approach infinity, means that the tests are suitable for

panels where T is larger than N .

We now investigate the asymptotic property of the test statistics under the local alter-

native, which is expressed as

H`
1 : ρ =

c2√
NT 2

,where c is some constant.

Note that for a single time series analysis, the local alternative is given by ρ = c2/T 2. Since

the sum of STi is normalized by
√
N as in ZA, the local alternative for panel stationarity

tests becomes ρ = c2/(
√
NT 2).

Theorem 2 Suppose that Assumption 1 holds. Under H`
1, as N and T approach infinity

simultaneously with N/T → 0, the augmented KPSS and LM test statistics have the same
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limiting distribution given by

ZA, ZLM
(N,T )
=⇒ N(0, 1) +

c2

ζ
E

[∫ 1

0
F vi (r)2dr

]
,

where F vi (r) =
∫ r
0 B

v
i (s)ds −

∫ r
0 z(s)

′ds
(∫ 1

0 z(s)z(s)
′ds
)−1 ∫ 1

0 z(s)B
v
i (s)ds with Bv

i (r) being

independent Brownian motions, z(r) = 1 and E[
∫ 1
0 F

v
i (r)2dr] =

√
1/180 when zt = 1, and

z(r) = [1, r]′ and E[
∫ 1
0 F

v
i (r)2dr] =

√
11/25200 when zt = [1, t]′.

This result implies that both the augmented KPSS and extended LM test statistics have

the same asymptotic local distribution. Since the LM test is locally best invariant, we can

see that the augmented KPSS test has the same asymptotic local optimality.

We can also deduce from Theorem 2 that both tests are more powerful when only a

constant is included in the regression than in the trending case, much like the univariate

KPSS test, because 1/90 > 11/12600.

We finally investigate the asymptotic property of the test statistics under the fixed

alternative H1. The following theorem gives the difference in the powers of the two tests

when the alternative is not local but far away from ρ = 0.

Theorem 3 Suppose that Assumption 1 holds. Under H1, as N and T approach infinity

simultaneously with N/T → 0,

1√
NT 2

ZA
(N,T )
=⇒ ρ

ζ
Evi

[∫ 1

0
Gvi (r)

2dr

]
, and

1√
NT 2

ZLM
p (N,T )−→ ρ

ζ
E

[∫ 1

0
F vi (r)2dr

]
,

where Gvi (r) =
∫ r
0 B

v
i (s)ds −

∫ r
0 z
′
2(s)ds(

∫ 1
0 z2(s)z

′
2(s)ds)

−1 ∫ 1
0 z2(s)B

v
i (s)ds with z2(r) =

[z′(r), Bv(r)]′, Bv(r) is a standard Brownian motion independent of Bv
i (r), and Evi denotes

the expectation operator with respect to Bv
i (r).

Note that since Gvi (r) depends on Bv
i (r) and Bv(r), which are independent, we can see

that Evi[
∫ 1
0 G

v
i (r)

2dr] still depends on Bv(·) and is thus stochastic, while E[
∫ 1
0 F

v
i (r)2dr]

is deterministic. This is an interesting result because when the asymptotic local powers

are the same for the two tests, it is often the case that they also have the same limiting
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distribution under the fixed alternative. In our situation, the two tests have the same local

asymptotic power from Theorem 2 but the powers are different under the fixed alternative

from Theorem 3. This implies that although the two tests are locally optimal, they are not

equivalent in a wide range under the alternative.

Finally, we discuss the case where the variances are unknown. In this case, we can

estimate σ2ε consistently under H0 by (NT )−1
∑N

i=1

∑T
t=1 ε̂

2
it, where ε̂2it is the residual from

the augmented regression. Then, we can still construct ZA in practical analysis. However,

the construction of the LM test requires the knowledge of not only σ2ε but also σ2fγγ
′ as in

the definition of A, which can be obtained by the method in Bai (2003). However, since ZA

is much simpler than ZLM , and ZA is asymptotically locally optimal, the augmented KPSS

test would be convenient and useful in practical analysis.

4. Finite sample property

In this section, we investigate how accurately does the asymptotic theory approximate the

finite sample behavior of the augmented KPSS and LM tests. We consider the following

data generating process for finite sample simulations:

yit = z′tδi + rit + ftγi + εit, ft ∼ i.i.d.N(0, 1), εit ∼ i.i.d.N(0, 1),

rit = rit−1 + vit, vit ∼ i.i.d.N(0, ρ),

{
H0 : ρ = 0,
H1 : ρ = 0.0001, 0.001, 0.01.

where δi = αi for the constant case while δi = [αi, βi]
′ for the trend case with αi and βi being

drawn from independent U(0, 0.02), γi are drawn from −1 + U(0, 4) for the strong cross-

sectional correlation case (SCC) and from U(0, 0.02) for the weak cross-sectional correlation

case (WCC), and αi, βi, and γi are fixed throughout the iterations. Since our purpose is

to see if the asymptotic theory obtained in the previous section can approximate the finite

sample behavior, we assume that the variances are known throughout the simulations. We

consider all the pairs of N = 10, 20, 30, 50, and 100, and T = 50, 100, and 200. The level

of significance is 0.05 and the number of replications is 10,000 in all experiments.

Table 1 shows the sizes of the tests. We can observe that the empirical size of the

augmented KPSS test is close to the nominal one for any value of T for the SCC case while

10



it is slightly undersized for the WCC case. On the other hand, the size of the LM test is

close to the nominal one irrespective of N and T but it is slightly undersized for the SCC

case while it is slightly oversized for the WCC case. Overall, the null distributions of the

two tests seem to be well approximated by a standard normal distribution as suggested by

Theorem 1 in view of the size of the tests.

Table 2 reports the powers of the tests. For given N and T , the upper, middle, and lower

entries are the powers of the tests for ρ = 0.0001, 0.001, and 0.01, respectively. From the

table, the powers of the tests become higher for larger ρ and T , although the tests have low

power when T is small. We can also observe that the powers become higher for larger N .

For example, the size of the augmented KPSS test for T = 50, SCC, and the constant case

is relatively close to 0.05 for all the values of N while the empirical power when ρ = 0.001

is 0.145, 0.202, 0.254, 0.342, and 0.539 for N = 10, 20, 30, 50, and 100, respectively. Table

2 implies that the tests are consistent as proved by Theorem 3.

In order to see if the augmented KPSS test can be seen as the asymptotically locally

best test indicated by Theorem 2, we calculated the size adjusted power of the tests. Figure

1 draws the power curves for selected cases. From the figure, we observe that the power of

the augmented KPSS test is almost the same as that of the LM test for the constant case.

When a linear trend is included, the augmented KPSS test is as powerful as the LM test

when ρ is small while the former is slightly less powerful than the latter for the trend case.

As a whole, the finite sample behavior of the augmented KPSS and LM tests is well

approximated by the asymptotic theory established in the previous section when N and T

are of moderate size.

5. Conclusion

In this paper we extended Hadri’s (2000) test to correct for cross-sectional dependence à la

Pesaran (2007). We showed that the limiting null distribution of the augmented KPSS test

is the same as that of Hadri’s test that assumes cross-sectional dependence. We also derived

the LM test under the assumption of cross-sectional dependence. Then, we compared these
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two tests and found that the augmented KPSS test is asymptotically locally optimal but it

is not asymptotically equivalent to the LM test under the fixed alternative.

Although the augmented KPSS test has a local optimal property, we do not know the

theoretical and finite sample property of the test when the idiosyncratic errors are serially

correlated. In addition, we assumed a one-dimensional common factor in this paper but

it would be worth considering multi-dimensional common factors. The modification of our

test to such a general case is our ongoing research.
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Appendix

In this appendix, we denote some constants independent of N , T , and the subscripts i and

t as C, C1, C2, · · · . To save space, we give the outline of the proof of the theorems only for

the case where zt = [1, t]. Details are available upon request. The proof for the level case

with zt = 1 proceeds in exactly the same way, and is thus omitted. We also assume that

σ2ε = 1 in this appendix without loss of generality because we know σ2ε under Assumption

1(i).

We first express ȳt in matrix form. Since ȳt = z′tδ̄ + r̄t + ftγ̄ + ε̄t, we have

ȳ = Zδ̄ + r̄ + f γ̄ + ε̄, (12)

where, for example, ȳ = [ȳ′1, ȳ
′
2, · · · , ȳ′T ]′ and the other vectors and matrices are defined

similarly. Since γ̄ 6= 0, we have f = (ȳ−Zδ̄− r̄− ε̄)/γ̄. By inserting this into (2), the model

becomes

yi = Z(δi − γ̃iδ̄) + γ̃iȳ + (ri − γ̃ir̄) + (εi − γ̃iε̄), (13)

where γ̃i = γi/γ̄.

Let W = [τ,d, ȳ] = [Z, ȳ] and W ∗ = WQ = [Z, ȳ∗], where ȳ∗ = ȳ − Zδ̄ = r̄ + f γ̄ + ε̄,

Q =

[
I2 −δ̄
0 1

]
, D =

[
Dτ 0

0
√
T

]
and Dτ =

[ √
T 0

0 T
√
T

]
.
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Because Mw = Mw∗ , STi in the augmented KPSS test statistic can be expressed in matrix

form as

STi =
1

T 2
y′iMw∗L′LM∗yi.

Before proceeding with the proof of the theorems, we state two lemmas, which will be

used in the proof repeatedly.

Lemma A.1 Let vit ∼ i.i.d.N(0, σ2v) for i = 1, · · · , N and t = 1, · · · , T , rit =
∑t

s=1 vis,

and r̄t = N−1
∑N

i=1 rit. Then,

E [risrit] = σ2v min(s, t), (14)

E

( t∑
s=1

ris

)2
 =

σ2v
6
t(t+ 1)(2t+ 1), (15)

E

( t∑
s=1

sris

)2
 =

σ2v
30
t(t+ 1)(2t+ 1)(2t2 + 2t+ 1), (16)

E [r̄sr̄t] =
σ2v
N

min(s, t), (17)

E

( t∑
s=1

r̄s

)2
 =

σ2v
6N

t(t+ 1)(2t+ 1), (18)

E

( t∑
s=1

sr̄s

)2
 =

σ2v
30N

t(t+ 1)(2t+ 1)(2t2 + 2t+ 1), (19)

E

[(
t∑

s=1

ris

)(
T∑
t=1

rit

)]
=

σ2v
6
t(t+ 1)(3T − t+ 1), (20)

E

[(
t∑

s=1

ris

)(
T∑
t=1

trit

)]
=

σ2v
24
t(t+ 1)(6T 2 + 6T − t2 − t+ 2), (21)

E

[(
T∑
t=1

rit

)(
T∑
t=1

trit

)]
=

σ2v
24
T (T + 1)(5T 2 + 5T + 2), (22)

E [risritriuriv] = σ4v(2st+ su) for s ≤ t ≤ u ≤ v. (23)

The next lemma gives the sufficient conditions on the equivalence of the sequential limit

to the joint limit. Notice that when the statistic SiT weakly converges to Si∞ as T → ∞,
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we can construct the probability space on which both SiT and Si∞ exist, as discussed in

Phillips and Moon (1999).

Lemma A.2 Let SiT and Si∞ be i.i.d. sequences across i (i = 1, · · · , N) on the same

probability space. Assume that Si∞ does not depend on N , SiT is independent of Sj∞ for

i 6= j, and SiT
T

=⇒ Si∞ as T →∞.

(i) If (a) E[SiT ] → µ1 ≡ E[Si∞] < ∞ as both N and T approach infinity, and (b)

supN,T E[S2
iT ] <∞, then,

1

N

N∑
i=1

SiT
p (N,T )−→ µ1.

(ii) If (a) N−1/2
∑N

i=1 Si∞
N

=⇒ S as N →∞, (b) SiT does not depend on N and supT E[S2+κ1
iT ] <

∞ for some κ1 > 0 or E[S2
iT ] → µ2 ≡ E[S2

i∞] < ∞ as T → ∞, (c) supT E[S2
iT ] < ∞ and

E[S2+κ2
i∞ ] <∞ for some κ2 > 0, then,

1√
N

N∑
i=1

SiT
(N,T )
=⇒ S.

Proof of Lemma A.2: (i) Since SiT is an i.i.d. sequence, we have for any arbitrary ε > 0,

P

(∣∣∣∣∣ 1

N

N∑
i=1

SiT − E[SiT ]

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2N
E[(SiT − E[SiT ])2] ≤ 1

ε2N
sup
N,T

E[S2
iT ]→ 0

by condition (b) as both N and T approach infinity. Because E[SiT ]→ µ1 by condition (a),

we can see that N−1
∑N

i=1 SiT
p (N,T )−→ µ1.

(ii) Since SiT and Si∞ are i.i.d. sequences, we have for any arbitrary ε > 0,

P

(∣∣∣∣∣ 1√
N

N∑
i=1

(SiT − Si∞)

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2
(
E[S2

iT ] + E[S2
i∞]− 2E[SiTSi∞]

)
. (24)

If supT E[S2+κ1
it ] <∞, then we can replace the limit and the expectation by Theorem 4.5.2.

of Chung (1974), and thus, limT E[S2
iT ] = E[S2

i∞] under condition (b). On the other hand,

by Hölder’s inequality, we have for any arbitrary 0 < δ < 1,

E
[
|SiTSi∞|1+δ

]
≤
(
E
[
S2
iT

])(1+δ)/2 (
E
[
|Si∞|2(1+δ)/(1−δ)

])(1−δ)/2
.
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The right-hand side of the above inequality with δ = κ2/(4+κ2) is bounded above uniformly

over T by condition (c). This implies that supT E[|SiTSi∞|1+κ2/(4+κ2)] <∞, and again, we

can replace the limit and the expectation, so that limT E[SiTSi∞] = E[S2
i∞]. As a result,

the right-hand side of (24) approaches zero as both N and T approach infinity. Combining

this result with condition (a), we obtain (ii).2

Proof of Theorem 1

Because ri and r̄ disappear under the null hypothesis, STi can be expressed in matrix form

under H0 as

STi =
1

T 2
y′iMw∗L′LMw∗yi

=
1

T 2
ε′iMw∗L′LMw∗εi −

2γ̃i
T 2

ε̄′Mw∗L′LMw∗εi +
γ̃2i
T 2
ε̄′Mw∗L′LMw∗ ε̄

= ST1i − 2γ̃iST2i + γ̃2i ST3i, say.

Let ST 0
1i = T−2ε′iMzL

′LMzεi. Since Shin and Snell (2006) showed that

1√
N

∑N
i=1(ST

0
1i − ξ)

ζ

(N,T )
=⇒ N(0, 1),

it is sufficient for us to prove that

1√
N

N∑
i=1

(ST1i − ST 0
1i)

p (N,T )−→ 0, (25)

1√
N

N∑
i=1

ST2i
p (N,T )−→ 0, (26)

1√
N

N∑
i=1

ST3i
p (N,T )−→ 0. (27)

Let J0i = T−1Lεi, [J1, J2] = T−1LW ∗D−1 = [T−1LZD−1τ , T−3/2Lȳ∗], [J ′3i, J
′
4i]
′ =

D−1W ∗′εi = [(D−1τ Z ′εi)
′, (T−1/2ȳ∗′εi)

′]′, K = [[Kij ]] = D−1W ∗′W ∗D−1, and K−1 = [[Kij ]]

for i, j = 1, 2. Then, we have

1

T
LMw∗εi =

1

T
Lεi −

1

T
LW ∗D−1

(
D−1W ∗′W ∗D−1

)−1
D−1W ∗′εi

= (J0i − J1K11J3i)− {J2K21J3i + (J1K
12 + J2K

22)J4i}. (28)
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Similarly, by letting J̄0 = N−1
∑N

i=1 J0i, J̄3 = N−1
∑N

i=1 J3i, and J̄4 = N−1
∑N

i=1 J4i, we

can see that

1

T
LMw∗ ε̄i = J̄0 − (J1K

11 + J2K
21)J̄3 − (J1K

12 + J2K
22)J̄4. (29)

We first prove (25). Using expression (28), ST1i can be decomposed into

ST1i = (J0i − J1K11J3i)
′(J0i − J1K11J3i)

−2(J0i − J1K11J3i)
′{J2K21J3i + (J1K

12 + J2K
22)J4i}

+{J2K21J3i + (J1K
12 + J2K

22)J4i}′{J2K21J3i + (J1K
12 + J2K

22)J4i}

= ST a1i + ST b1i + ST c1i, say. (30)

In order to evaluate each term, we use the following lemma.

Lemma A.3 Under the null hypothesis, as both N and T approach infinity simultaneously,

(i) E‖J0i‖2 ≤ C, 1√
N

∑N
i=1 ‖J0i‖2 = Op(

√
N), and ‖J̄0‖ = Op(

1√
N

); (ii) ‖J1‖ = O(1);

(iii) E‖J2‖2 ≤ C
T and ‖J2‖ = Op(

1√
T

); (iv) K11 = O(1), K12 = K ′21 = Op(
1√
T

), K22 =

Op(1), K11 = K−111 + Op(
1
T ), K21 = K ′21 = Op(

1√
T

), and K22 = Op(1); (v) E‖J3i‖2 ≤ C,

1√
N

∑N
i=1 ‖J3i‖2 = Op(

√
N), and ‖J̄3‖ = Op(

1√
N

); (vi) E‖J4i‖2 ≤ C, 1√
N

∑N
i=1 ‖J4i‖2 =

Op(
√
N), and J̄4 = Op(

√
T
N ); and (vii) 1√

N

∑N
i=1 ‖J0i‖‖J`i‖ = Op(

√
N) for `,m = 3, 4 and

1√
N

∑N
i=1 ‖J3i‖‖J4i‖ = Op(

√
N).

Since ST 0
1i = (J0i − J1K−111 J3i)

′(J0i − J1K−111 J3i), we have using Lemma A.3,∣∣∣∣∣ 1√
N

N∑
i=1

(ST a1i − ST 0
1i)

∣∣∣∣∣ =
1√
N

N∑
i=1

‖J1(K11 −K−111 )J3i‖2

+
2√
N

N∑
i=1

‖(J0i − J1K−111 J3i)
′{J1(K11 −K−111 )J3i‖

= Op

(√
N

T 2

)
+Op

(√
N

T

)
,

which converges to 0 in probability when both N and T approach infinity because N/T → 0

by Assumption 1(iii).
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In exactly the same manner, we have

1√
N

N∑
i=1

‖ST b1i‖ = Op

(√
N

T

)
and

1√
N

N∑
i=1

‖ST c1i‖ = Op

(√
N

T

)
.

Therefore, we obtained (25).

To prove (26) and (27), note that∣∣∣∣∣ 1√
N

N∑
i=1

ST2i

∣∣∣∣∣ ≤ C
√
N

T 2
ε̄′Mw∗L′LMw∗ ε̄ and

∣∣∣∣∣ 1√
N

N∑
i=1

ST3i

∣∣∣∣∣ ≤ C
√
N

T 2
ε̄′Mw∗L′LMw∗ ε̄.

Then, it is sufficient to show that
√
N
T 2 ε̄

′Mw∗L′LMw∗ ε̄
p (N,T )−→ 0, which can be proved by noting

that
∥∥ 1
T LMw∗ ε̄

∥∥ = Op

(
1√
N

)
, using expression (29) and Lemma A.3. We thus obtain the

result for the augmented KPSS test statistic.

To derive the limiting distribution of the LM test statistic, we first note that under H0,

(IN ⊗Mz)y = (γ ⊗Mzf) + (IN ⊗Mz)ε

∼ N (0, A⊗Mz) = (A1/2 ⊗Mz)η,

where η = [η′1, · · · , η′N ]′ ∼ N(0, IN ⊗ IT ). Then, LM can be expressed as

LM =
1

NT 2
η′(IN ⊗MzL)(A−1 ⊗ IT )(IN ⊗ L′Mz)η. (31)

We first investigate the matrix A. Note that A−1 can be expressed as

A−1 = (σ2fγγ
′ + IN )−1 =

(
IN −

1

1 + σ2fγ
′γ
σ2fγγ

′

)
.

Since rk(γγ′) = 1 and (γγ′)γ = (γ′γ)γ, the (N−1) eigenvalues of γγ′ are 0 and the non-zero

eigenvalue is γ′γ, for which the corresponding eigenvector is γ. Then, there exists an N ×N

orthonormal matrix P such that P ′P = PP ′ = IN and P ′γγ′P = diag{γ′γ, 0, · · · , 0} ≡ Λγ .

This implies that

P ′A−1P = IN −
1

1 + σ2fγ
′γ
σ2fΛγ = diag

{
1

1 + σ2fγ
′γ
, 1, · · · , 1

}
≡ Λ−1A . (32)
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By inserting (32) into (31), we obtain

LM =
1

NT 2
η′(IN ⊗MzL)(PP ′σ2εA

−1PP ′ ⊗ IT )(IN ⊗ L′Mz)η

=
1

NT 2
η∗′(IN ⊗MzL)(Λ−1A ⊗ IT )(IN ⊗ L′Mz)η

∗

=
1

1 + σ2fγ
′γ

1

NT 2
η∗′1 MzLL

′Mzη
∗
1 +

1

NT 2

N∑
i=2

η∗′i MzLL
′Mzη

∗
i ,

where η∗ = [η∗′1 , · · · , η∗′N ]′ = (P ⊗ IT )η ∼ N(0, IN ⊗ IT ). Note that the first term converges

to zero in probability as both N and T approach infinity, while the second term has the

same structure as ST 0
1i. We then obtain the result for the LM test statistic.�

Proof of Theorem 2

We first note that Lemma A.3 still holds under H`
1 using the fact that ȳ∗t = r̄t + γ̄ft + ε̄t.

Let Jr0i = T−1Lri, [Jr′3i, J
r′
4i]
′ = D−1W ∗′ri = [(D−1τ Z ′ri)

′, (T−1/2ȳ∗′ri)
′]′, J̄r0 = N−1

∑N
i=1 J

r
0i,

J̄r3 = N−1
∑N

i=1 J
r
3i, and J̄r4 = N−1

∑N
i=1 J

r
4i. Under H`

1, we have the following lemma.

Lemma A.4 Under the local alternative H`
1, as both N and T approach infinity simul-

taneously, (i) E‖Jr0i‖2 ≤ C√
N

, 1√
N

∑N
i=1 ‖Jr0i‖2 = Op(1), and ‖J̄r0‖ = Op(

1
N3/4 ); (ii)

E‖Jr3i‖2 ≤ C√
N

, 1√
N

∑N
i=1 ‖Jr3i‖2 = Op(1), and ‖J̄r3‖ = Op(

1
N3/4 ); (iii) E‖Jr4i‖2 ≤ C√

NT
,

1√
N

∑N
i=1 ‖Jr4i‖2 = Op(

1
T ), and ‖J̄r4‖ = Op(

1
N3/4

√
T

); and (iv) 1√
N

∑N
i=1 ‖Jr0i‖‖Jr3i‖ =

Op(1), 1√
N

∑N
i=1 ‖Jr0i‖‖Jr4i‖ = Op(

1√
T

), and 1√
N

∑N
i=1 ‖Jr3i‖‖Jr4i‖ = Op(

1√
T

).

Note that, under the local alternative,

1

T
LMw∗yi =

1

T
LMw∗εi −

γ̃i
T
LMw∗ ε̄+

1

T
LMw∗ri −

γ̄i
T
LMw∗ r̄.

Using Lemmas A.3 and A.4, it can be shown that∥∥∥∥ 1

T
LMw∗ ε̄

∥∥∥∥ = Op

(
1√
N

)
and

∥∥∥∥ 1

T
LMw∗ r̄

∥∥∥∥ = Op

(
1

N3/4

)
,

and thus, since |γ̃i| ≤ C, we can see that both∥∥∥∥∥ 1√
NT 2

N∑
i=1

γ̃iε
′
iMw∗L′LM2∗ r̄

∥∥∥∥∥ and

∥∥∥∥∥ 1√
NT 2

N∑
i=1

γ̃ir
′
iMw∗L′LM2∗ ε̄

∥∥∥∥∥
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are Op(N
−3/4). Therefore, the cross products between the terms related with εi and r̄, ri

and ε̄, and ε̄ and r̄ converge to zero in probability as both N and T approach infinity.

In addition, using expression (28) and Lemmas A.3 and A.4, it is observed that both

‖ 1

T
LMw∗εi − (J0i − J1K−111 J3i)‖ and ‖ 1

T
LMw∗ri − (Jr0i − J1K−111 J

r
3i)‖

are Op(T
−1/2), which implies that we only have to consider (J0i − J1K−111 J3i) and (Jr0i −

J1K
−1
11 J

r
3i) in the limit. Moreover, the cross product between these two terms can be seen

to be negligible. Therefore, we have

ZA =
1

ζ
√
N

N∑
i=1

{(
J0i − J1K−111 J3i

)′ (
J0i − J1K−111 J3i

)
− ξ
}

+
1

ζN

N∑
i=1

√
N
(
Jr0i − J1K−111 J

r
3i

)′ (
J0i − J1K−111 J

r
3i

)
+ op(1).

The first term weakly converges to a standard normal distribution as proved in Theorem 1,

whereas the probability limit of the second term is obtained by applying Lemma A.2 (i).

To see this, we first note that, using Lemma A.1,

E
[√

N
(
Jr0i − J1K−111 J

r
3i

)′ (
Jr0i − J1K−111 J

r
3i

)]
=

11

12600
c2 +O

(
1

T 2

)
,

while the second moment is bounded above uniformly over N and T using (23). On the

other hand, since N1/4Tr[Tr]
T

=⇒ cBv
i (r), we can see that

√
N
(
Jr0i − J1K−111 J

r
3i

)′ (
J0i − J1K−111 J

r
3i

) T
=⇒ c2

∫ 1

0
F vi (r)2dr,

whose moment is 11c2/12600 by direct calculation. Then, by Lemma A.2 (i), we have

1

ζ
√
N

N∑
i=1

(
Jr0i − J1K−111 J

r
3i

)′ (
Jr0i − J1K−111 J

r
3i

) p (N,T )−→ c2

ζ
E

[∫ 1

0
F vi (r)2dr

]
=

11

12600

c2

ζ
.

When zt = 1, the above probability limit can be shown to be c2/(90ζ) in exactly the

same manner.

In order to derive the limiting distribution of the LM test statistic, note that (IN ⊗

Mz)y = (IN ⊗Mz)r + (A1/2 ⊗Mz)η. Then, the denominator of the LM test statistic can
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be expressed as

√
N(LM − ξ) =

1√
NT 2

{
η′(A−2 ⊗MzLL

′Mz)η − ξ
}

(33)

+
1√
NT 2

r′(A−2 ⊗MzLL
′Mz)r +

2√
NT 2

η′(A−2 ⊗MzLL
′Mz)ε.

The first term on the right-hand side of (33) converges in distribution to a standard normal

distribution as proved in Theorem 1.

Since A−2 = PΛ−2A P ′, the second term on the right-hand side of (33) is expressed as

1√
NT 2

r′(A−2 ⊗MzLL
′Mz)r =

1√
NT 2

r′(P ⊗ IT )(Λ−2A ⊗MzLL
′Mz)(P ⊗ IT )r.

Note that (P ⊗ IT )r = (P ⊗ IT )(IN ⊗ L)v = (IN ⊗ L)v∗ = r∗, where v∗ ≡ (P ⊗ IT )v ∼

N(0, ρ(IN ⊗ IT )) and r∗ ≡ (IN ⊗ L)v∗. Using this expression, we have

1√
NT 2

r′(A−2 ⊗MzLL
′Mz)r =

1√
NT 2

r∗′(Λ−2A ⊗MzLL
′Mz)r

∗

=
1

(1 + σ2fγ
′γ)

1√
NT 2

r∗′1 MzLL
′Mzr

∗
1 +

1√
NT 2

N∑
i=2

r∗′i MzLL
′Mzr

∗
i .

It is not difficult to see that the first term on the right-hand side converges to zero as both

N and T approach infinity, while

1√
NT 2

N∑
i=2

r∗′i MzLL
′Mzr

∗
i =

1√
N

N∑
i=2

(
Jr∗0i − J1K−111 J

r∗
3i

)′ (
Jr∗0i − J1K−111 J

r∗
3i

)
, (34)

where Jr∗0i and Jr∗3i are defined in the same way as Jr0i and Jr3i with rt being replaced by

r∗t . Since r∗ has the same distribution as r, (34) converges in probability to 11c2/12600 as

proved for the case of ZA.

Similarly, we can see that the third term on the right-hand side of (33) converges to zero

in probability as proved for the case of ZA.�

Proof of Theorem 3

Lemma A.5 Under the fixed alternative H1, as both N and T approach infinity simul-

taneously, (i) E‖J0i‖2 ≤ C, 1√
N

∑N
i=1 ‖J0i‖2 = Op(

√
N), and ‖J̄0‖ = Op(

1√
N

); (ii)
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‖J1‖ = O(1); (iii) E‖J2‖2 ≤ C T
N and ‖J2‖ = Op(

√
T√
N

); (iv) K11 = O(1), K12 = K ′21 =

Op(
√
T√
N

), and K22 = Op(
T
N ); (v) E‖J3i‖2 ≤ C, 1√

N

∑N
i=1 ‖J3i‖2 = Op(

√
N), and ‖J̄3‖ =

Op(
1√
N

); (vi) E‖J4i‖2 ≤ C T
N , 1√

N

∑N
i=1 ‖J4i‖2 = Op(

T√
N

), and J̄4 = Op(
√
T
N ); and (vii)

1√
N

∑N
i=1 ‖J0i‖‖J3i‖ = Op(

√
N), 1√

N

∑N
i=1 ‖J0i‖‖J4i‖ = Op(

√
T ), and 1√

N

∑N
i=1 ‖J3i‖‖J4i‖ =

Op(
√
T ).

Lemma A.6 Under the fixed alternative H1, as both N and T approach infinity simulta-

neously, (i) E‖Jr0i‖2 ≤ CT 2, 1√
N

∑N
i=1 ‖Jr0i‖2 = Op(

√
NT 2), and ‖J̄r0‖ = Op(

T√
N

); (ii)

E‖Jr3i‖2 ≤ CT 2, 1√
N

∑N
i=1 ‖Jr3i‖2 = Op(

√
NT 2), and ‖J̄r3‖ = Op(

T√
N

); (iii) E‖Jr4i‖2 ≤

C T 3

N , 1√
N

∑N
i=1 ‖Jr4i‖2 = Op(

√
NT 3), and ‖J̄r4‖ = Op(

T
√
T

N ); and (iv) 1√
N

∑N
i=1 ‖Jr0i‖‖Jr3i‖ =

Op(
√
NT 2), 1√

N

∑N
i=1 ‖Jr0i‖‖Jr4i‖ = Op(T

2
√
T ) and 1√

N

∑N
i=1 ‖Jr3i‖‖Jr4i‖ = Op(T

2
√
T ).

Using Lemmas A.5 and A.6, it can be shown that∥∥∥∥ 1

T 2
LMw∗εi

∥∥∥∥ = Op

(
1

T

)
,

∥∥∥∥ 1

T 2
LMw∗ ε̄

∥∥∥∥ = Op

(
1√
NT

)
,

∥∥∥∥ 1

T 2
LMw∗ r̄

∥∥∥∥ = Op

(
1√
N

)
,

which implies that

1√
NT 2

ZA =
1

ζ

1

N

N∑
i=1

1

T 4
r′iMw∗L′LMw∗ri + op(1).

We decompose the first term on the right-hand side such that

1

N

N∑
i=1

1

T 2
LMw∗ri =

1

T
Jr0i −

[
J1,

√
N√
T
J2

][
K11

√
N√
T
K12√

N√
T
K21

N
T K22

]−1 [
1
T J

r
3i√

N
T
√
T
Jr4i

]
.

Using this expression and letting K = D−12 KD−12 , where D2 = diag{1,
√
T/
√
N}, we have

1

N

N∑
i=1

1

T 4
riMw∗L′LMw∗ri

=
1

N

N∑
i=1

1

T 2
Jr′0iJ

r
0i − 2tr

(
K−1

1

N

N∑
i=1

[
1
T J

r
3i√

N
T
√
T
Jr4i

][
1

T
Jr′0iJ1,

√
N

T
√
T
Jr′0iJ2

])
(35)

+tr

(
K−1

[
J ′1J1

√
N√
T
J ′1J2√

N√
T
J ′2J1

N
T J
′
2J2

]
K−1

1

N

N∑
i=1

[
1
T J

r
3i√

N
T
√
T
Jr4i

] [
1
T J

r′
3i

√
N

T
√
T
Jr′4i

])
.
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By applying Lemmas A.1 and A.2, it can be shown that the joint limits of the three terms

on the right-hand side of (35) are the same as the sequential limits, which are given by

1

N

N∑
i=1

1

T 2
Jr′0iJ

r
0i
p (N,T )−→ σ2vEvi

[∫ 1

0

(∫ r

0
Bv
i (s)ds

)2

dr

]
, (36)

2tr

(
K−1

1

N

N∑
i=1

[
1
T J

r
3i√

N
T
√
T
Jr4i

] [
1
T J

r′
0iJ1,

√
N

T
√
T
Jr′0iJ2

])
(37)

(N,T )
=⇒ 2σ2vEvi

[(∫ 1

0
z2(t)

′Bv
i (t)dt

)(∫ 1

0
z2(t)z2(t)

′dt

)−1 ∫ 1

0

∫ r

0
zs(s)ds

∫ r

0
Bv
i (t)dtdr

]
,

tr

(
K−1

[
J ′1J1

√
N√
T
J ′1J2√

N√
T
J ′2J1

N
T J
′
2J2

]
K−1

1

N

N∑
i=1

[
1
T J

r
3i√

N
T
√
T
Jr4i

] [
1
T J

r′
3i

√
N

T
√
T
Jr′4i

])
(N,T )
=⇒ σ2vEvi

[∫ 1

0
z2(t)

′Bv
i (t)dt

(∫ 1

0
z2(t)z2(t)

′dt

)−1
×
∫ 1

0

∫ r

0
z2(s)ds

∫ r

0
z2(s)

′dsdr

(∫ 1

0
z2(t)z2(t)

′dt

)−1 ∫ 1

0
z2(t)

′Bv
i (t)dt

]
. (38)

Using these results, we obtain the joint weak limit of ZA under H1 because σ2v = σ2ερ = ρ.

For the LM test statistic, we can see using expression (33) and Lemmas A.5 and A.6

that

1√
NT 2

ZLM =
1

ζNT 4
r′
(
A−2 ⊗MzLL

′Mz

)
r + op(1)

=
1

ζNT 2

N∑
i=2

(
Jr∗0i − J1K−111 J

r∗
3i

)′ (
Jr∗0i − J1K−111 J

r∗
3i

)
+ op(1)

p (N,T )−→ σ2v
ζ
E

[∫ 1

0
F v∗i (r)2dr

]
.

Because F v∗i (r) has the same distribution as F vi (r), we obtain the theorem.�
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Table 1. Size of the tests

constant case trend case
SCC WCC SCC WCC

N T ZA ZLM ZA ZLM ZA ZLM ZA ZLM

50 0.049 0.033 0.026 0.061 0.040 0.022 0.018 0.062
10 100 0.053 0.034 0.033 0.067 0.045 0.026 0.024 0.063

200 0.057 0.036 0.036 0.066 0.048 0.026 0.026 0.063
50 0.052 0.041 0.032 0.065 0.040 0.029 0.023 0.060

20 100 0.057 0.042 0.040 0.067 0.043 0.030 0.023 0.058
200 0.058 0.045 0.041 0.067 0.047 0.031 0.029 0.060
50 0.053 0.041 0.034 0.060 0.041 0.031 0.021 0.056

30 100 0.056 0.043 0.037 0.060 0.047 0.032 0.027 0.057
200 0.054 0.040 0.037 0.059 0.046 0.032 0.029 0.057
50 0.051 0.046 0.034 0.060 0.041 0.036 0.022 0.058

50 100 0.055 0.044 0.036 0.058 0.049 0.039 0.032 0.061
200 0.056 0.046 0.042 0.063 0.048 0.036 0.033 0.055
50 0.061 0.047 0.030 0.058 0.046 0.038 0.019 0.052

100 100 0.064 0.046 0.036 0.056 0.060 0.040 0.029 0.056
200 0.060 0.040 0.038 0.052 0.064 0.040 0.033 0.055



Table 2. Power of the tests

constant case trend case
SCC WCC SCC WCC

N T ZA ZLM ZA ZLM ZA ZLM ZA ZLM

0.055 0.038 0.034 0.069 0.045 0.025 0.019 0.066
50 0.145 0.109 0.092 0.181 0.061 0.037 0.030 0.088

0.882 0.862 0.796 0.923 0.356 0.297 0.243 0.453
0.087 0.059 0.055 0.106 0.049 0.028 0.025 0.070

10 100 0.520 0.462 0.434 0.588 0.143 0.097 0.086 0.193
1.000 1.000 0.997 1.000 0.948 0.929 0.904 0.973
0.224 0.178 0.171 0.270 0.073 0.044 0.043 0.103

200 0.970 0.962 0.955 0.985 0.582 0.506 0.488 0.670
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.062 0.049 0.039 0.077 0.042 0.032 0.025 0.063

50 0.202 0.178 0.148 0.238 0.066 0.053 0.039 0.096
0.989 0.988 0.963 0.994 0.559 0.526 0.447 0.646
0.102 0.081 0.072 0.118 0.053 0.037 0.032 0.069

20 100 0.759 0.729 0.695 0.800 0.204 0.164 0.145 0.255
1.000 1.000 1.000 1.000 0.999 0.999 0.996 1.000
0.341 0.303 0.291 0.388 0.097 0.071 0.063 0.122

200 1.000 0.999 0.999 1.000 0.834 0.801 0.781 0.876
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.067 0.054 0.041 0.076 0.041 0.033 0.021 0.057

50 0.254 0.226 0.181 0.287 0.071 0.059 0.039 0.099
0.999 0.999 0.988 0.999 0.713 0.692 0.589 0.779
0.126 0.099 0.088 0.135 0.062 0.045 0.038 0.075

30 100 0.888 0.870 0.841 0.908 0.276 0.231 0.201 0.321
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.434 0.392 0.376 0.462 0.122 0.087 0.079 0.140

200 1.000 1.000 1.000 1.000 0.943 0.926 0.912 0.957
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.066 0.056 0.044 0.075 0.044 0.041 0.026 0.063

50 0.342 0.318 0.253 0.373 0.084 0.081 0.051 0.114
1.000 1.000 0.998 1.000 0.878 0.877 0.787 0.913
0.141 0.121 0.105 0.151 0.066 0.054 0.044 0.081

50 100 0.975 0.971 0.958 0.980 0.373 0.343 0.292 0.419
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.582 0.554 0.530 0.609 0.143 0.118 0.108 0.164

200 1.000 1.000 1.000 1.000 0.992 0.991 0.989 0.994
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.085 0.066 0.044 0.080 0.054 0.042 0.023 0.057

50 0.539 0.499 0.391 0.541 0.124 0.108 0.061 0.138
1.000 1.000 1.000 1.000 0.991 0.991 0.960 0.994
0.218 0.174 0.146 0.200 0.090 0.066 0.050 0.085

100 100 1.000 1.000 0.999 1.000 0.629 0.573 0.501 0.626
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.832 0.803 0.780 0.827 0.237 0.179 0.158 0.223

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 1: Finite sample power under restrictive assumptions


